- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources5
- Resource Type
-
0005000000000000
- More
- Availability
-
50
- Author / Contributor
- Filter by Author / Creator
-
-
Liang, Yitao (5)
-
Van den Broeck, Guy (5)
-
Liu, Anji (2)
-
Bekker, Jessa (1)
-
Dang, Meihua (1)
-
Friedman, Tal (1)
-
Khosravi, Pasha (1)
-
Liu, Xuejie (1)
-
Vergari, Antonio (1)
-
Xu, Hongming (1)
-
Xu, Jingyi (1)
-
Zhang, Zilu (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Liu, Anji; Xu, Hongming; Van den Broeck, Guy; Liang, Yitao (, Proceedings of the 37th AAAI Conference on Artificial Intelligence)
-
Dang, Meihua; Khosravi, Pasha; Liang, Yitao; Vergari, Antonio; Van den Broeck, Guy (, Proceedings of the 35th AAAI Conference on Artificial Intelligence (Demo Track))
-
Xu, Jingyi; Zhang, Zilu; Friedman, Tal; Liang, Yitao; Van den Broeck, Guy (, Proceedings of the 35th International Conference on Machine Learning (ICML))This paper develops a novel methodology for using symbolic knowledge in deep learning. From first principles, we derive a semantic loss function that bridges between neural output vectors and logical constraints. This loss function captures how close the neural network is to satisfying the constraints on its output. An experimental evaluation shows that it effectively guides the learner to achieve (near-)state-of-the-art results on semi-supervised multi-class classification. Moreover, it significantly increases the ability of the neural network to predict structured objects, such as rankings and paths. These discrete concepts are tremendously difficult to learn, and benefit from a tight integration of deep learning and symbolic reasoning methods.more » « less
-
Liang, Yitao; Bekker, Jessa; Van den Broeck, Guy (, Proceedings of the 33rd Conference on Uncertainty in Artificial Intelligence (UAI))
An official website of the United States government

Full Text Available